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SCIENTIFIC computing is all-per-
vasive, with its applications ranging 
from weather prediction, geophys-

ics, astrophysics, branches of engineering 
to genomics (as noted in the present-day 

context where the first task was to obtain 
the genome sequence for the viral pan-
demic). The relationship between com-
puting and science is synergistic – with 
the former providing an orderly, formal 
framework which acts as an explanatory 
apparatus for the latter. While there is 
always an emphasis on creating Big Data 
for Analytics, there is an often overlooked 
aspect of extremely high accuracy scien-
tific computing which is ready to solve 
many unsolved problems. One would like 

to emphasise that high accuracy scientif-
ic computing will play a similar role, as 
calculus did for growth of science in the 
17th century. With the increasing availa-
bility of powerful computers the associ-
ated cost has diminished, making high 
quality/accuracy calculations possible in 
science and engineering.

Historically, high-precision scientific 
computing was conceived of as a me-
chanical calculator with gears, levers, and 
pulleys by Charles Babbage. While, this 

Advances in high accuracy, high 
performance scientific computing
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was ahead of its time in the concept, yet 
it led to high-precision manufacturing 
during the industrial revolution, making 
Britain a superpower. This serendipity of 
research, where the search for an accu-
rate scientific calculator eventually led to 
high-precision manufacturing hub, high-
lights the need for investment in quality. 
In the context of scientific computing, 
the major ingredients needed for high-fi-
delity are the simultaneous achievement 
of sound mathematical formulation, very 
efficient computing hardware, and excel-
lence in scientific software engineering.

The sound mathematical formulation 
is founded on the principles of mathe-
matical physics, attributed to the calculus 
of Newton and Leibnitz, which has led 
to flourish in physical sciences from the 
18th century onwards. Excellence in sci-
entific computing started with pioneer-
ing works by Euler, Gauss, and Fourier, 
among many others. Coming together of 
sound conservation principles along with 
developments in numerical methodolo-
gies, enthused the pioneer in Richardson1 
who came out with the idea of successful 
weather forecasting, almost two decades 
before the first digital computer, ENIAC, 
made its appearance. Due to unavaila-
bility of methods for rigorous analysis, 
the method proposed by Richardson 
was not diagnosed to be unconditionally 
unstable. This attracted the attention of 
some of the finest minds of early 20th 
century, in anticipation of the arrival of 
computers. One of the groups led by von 
Neumann provided a theory of scientific 
computing in solving partial differential 
equations, in a classified Los Alamos Re-
port2 in 1947. The report was declassified 
much later in 1996, but the theory of von 
Neumann based on Fourier analysis has 
been the principle of computing for the 
next five decades. 

The Fourier analysis primarily focused 
on preserving numerical stability, as 
noted in the report by the authors2: ‘our 
concern here is with stability rather than 
with accuracy.’ Unfortunately, this theory 

could not explain many phenomena, even 
for the simple model of one-dimensional 
wave propagation equation, for which an 
exact solution exists! The nature of this 
equation is an ideal tool to test the accu-
racy of any numerical method. Being a 
linear equation for the wave (signal), the 
von Neumann analysis assumed that the 
computed error follows the same dynam-

ics! Recently this has been replaced by a 
consistent theory of scientific comput-
ing3 explained by using the same wave 
equation. The idea behind adopting this 
model equation has its roots in the the-
ory of black swan, attributed to Scottish 
philosopher-educationist David Hume 
(see Figure1). 

Simply stated, this theory critiques 

Figure1: The statue of Scottish philosopher David Hume, a leading 
thinker, philosopher and educationist of his time. It is ironic that in his 
own land, he is adorned with a traffic cone! Hume is credited with the 
theory of the black swan.
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the method of induction used in epis-
temology, which is based on a common 
European belief in the middle ages that 
all swans are white, as was the case in 
Europe. When settlers arrived in Aus-
tralia and noted the presence of black 
swan, it prompted Hume to his famous 
theory that the existence of even a sin-
gle black swan is sufficient to negate 
the hypothesis that all swans are white. 
In a similar fashion, the new theory of 
scientific computing3 does not assume 
the numerical error evolution for the 
model convection equation given by

where c is the phase speed. Classical 
von Neumann analysis assumes the nu-
merical error (e) to also follow Eq. (1). 
However, the proposed theory of scien-
tific computing3 starting from the first 
principle considers the effects of spatial 
and temporal discretisations together, to 
arrive at an equation governing the error 

dynamics as

where A0(k) is the initial amplitude 
given as a function of wavenumber (k). 
Based on the property of Eq. (1), this in-
itial solution will propagate to the right 
at the speed c without any attenuation or 
dispersion. Thus, in this equation, G is 
the numerical amplification factor, which 
should have unit amplitude. The focus of 
von Neumann and Richtmeyer2 was to 
keep this always less than equal to unit 
value. Here, uN is the numerical solution 
obtained using the time step of Δt. While 
the details are available elsewhere,3 one 
can note the governing equation for error 
is driven by the terms on the right hand 
side, which are absent in von Neumann’s 
theory. The moot point in scientific com-
puting of Eq. (1) is that the constant 
phase speed (c) is no more a constant (cN 
= cN (k)) while one is computing it! This 
comes as a surprise to many computing 
professionals who may be in the field for 

decades.
Each of the terms on the right-hand 

side has distinct origin in Eq. (2). The 
first two terms on the right-hand side 
are sources of dispersion error. Despite 
its formidable appearance, this equa-
tion includes all error sources in com-
putation. The spatio-temporal analysis 
of numerical methods can capture es-
sential elements of error dynamics. The 
numerical methods which drastically re-
duce the sources of errors in Eq. (2) are 
called the dispersion relation preserving 
(DRP) methods, which are essential for 
all branches of physics and engineering 
dealing with signal propagation and wave 
phenomena.

Applications of dispersion relation 
preserving methods across 
multiple disciplines
There are instances across disciplines, 

where the physics is related to signal or 
wave propagation. In such cases, DRP 
methods are essential to retain high ac-
curacy. This is equally important in di-
rect numerical simulation (DNS) of 
fluid flow, which requires resolving all 
the present length scales. As an illustra-
tion, consider the generation of cyclonic 
disturbances in the Taylor-Green vortex 
problem. The flow with periodic bounda-
ry conditions admits an exact solution for 
the governing Navier-Stokes equation. 
However, small background disturbances 
(which could be inherent in computa-
tional framework) lead the exact solution 
to space-time dependent cyclonic struc-
ture, visualised in Figure2, obtained by 
solving the governing equation with DRP 
methods. The use of other methods leads 
to attenuation of disturbances without 
formation of the cyclonic structures, as 
visible on the top of Figure 2.

Figure2: Three-dimensional DNS of the Taylor-Green vortex with DRP 
methods, capturing coherent cyclonic structures 
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Physical mechanism behind 
formation of tsunami in 
geophysics
Devastations left in the wake of any tsu-
nami makes one realise that the physical 
mechanism behind it is not completely 
understood by the scientific commu-
nity even today. Although, earthquakes 
and continental tectonic plates relative-
ly shifting are the triggers, it has left the 
lingering question: why don’t all earth-
quakes cause tsunami even when the 
strength appears similar? To answer this, 
scientists at HPCL4 traced the events 
following earthquakes of two types: one 
caused by a vertical displacement, known 
as dip-slip event, and the other caused 
by a horizontal motion, called the strike-
slip event (see Figure3). These events 
are shown in bottom of Figure3, and the 
nonlinear responses are shown on the top 
from DNS. It is clear that the effect of a 
dip-slip event is far more severe than its 
strike-slip counterpart. Tsunami waves 
are triggered by earthquakes following a 
dip-slip type of motion, even though the 

energy output of earthquake for these 
two events are same. Once again, the 
higher accuracy offered by the numerics 
show the occurrence of tsunami to be 
more likely with dip-slip events and not 
necessarily by strike-slip event. 

Physical mechanism for transition 
to turbulence
Transition to turbulence is a classical 
problem of fluid dynamics, eluding many 
till date. It was the doctoral dissertation 
topic for Heisenberg and much later re-
mained a topic of debate, till it has been 
solved in HPCL,5,6 showing that the un-
stable flows support a spatio-temporal 
wave front which causes turbulence in 
flows. As expected, this wave-packet re-
quires a high accuracy DRP method to 
capture transition to turbulence. Some 
examples of the three-dimensional re-
sponse to a system, excited at the wall, are 
shown in Figures4 and 5, with harmonic 
excitation and excitation due to Gaussian 
circular patch, respectively. The harmon-
ic wall excitation leads to the formation 

of rows of hairpin vortices in Figure4. 
The Gaussian patch on the other hand, 
produces a wave-packet which eventually 
undergoes violent nonlinear breakdown. 
The differences in the disturbance evo-
lution, even when both the flows are ex-
cited at the wall, highlight the sensitivity 
of the flow to the imposed excitation.6 
Such sensitivity is captured by an accu-
rate numerical method. The response to 
a vortex convecting outside the boundary 
layer is shown in Figure6, and is found 
to be much more susceptible to sudden 
and violent growth of the wave-packet 
like disturbance field, even when the in-
itial disturbance is primarily two-dimen-
sional. In this computation, the energy of 
the flow field migrates from large scale to 
smaller scales due to action of convection 
and diffusion. DRP methods capture the 
energy cascade by DNS. Commercial or 
open-source software are not capable of 
producing such detailed results. It is im-
portant to note that such DNS will be 
backbone of many future engineering 
solutions and will be used regularly.

Figure3: Geophysical phenomena of tsunami explained by dip-slip and strike-slip events, by solving the Navier-
Stokes equation using DRP methods
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Baroclinic instability by Rayleigh-
Taylor mechanism
The Rayleigh-Taylor instability is an in-
terfacial instability arising when fluids of 
different densities interact due to baro-
clinic vorticity generation, starting from 
the corners of the initial interface, as 
shown in Figure7. The setup is an isolated 
box containing air with different densi-
ties, initially separated by a non-conduct-
ing barrier. Rayleigh-Taylor instability is 
a complex instability and its examples 
include mushroom clouds formed in vol-
canic eruptions, nuclear explosions, and 
supernova explosions. Two structures 
which are commonly observed are the 
spikes (created by the denser fluid pen-
etrating into the lighter one) and mush-
room-shaped bubbles (created by lighter 
fluid penetrating into the heavier one), as 
indicated in Figure7. These structures are 
highly sensitive to the initial numerical 

Figure4: Three-dimensional response to a time-harmonic vortical excitation at the wall showing array of hairpin 
vortices forming the disturbance packet

Figure5: Three-dimensional response to a Gaussian circular patch 
excitation at the wall showing disturbance propagation by a wave-packet 
like disturbance. Top frame shows the growing disturbance field, while 
the bottom frame depicts turbulent spots captured during nonlinear 
stages of transition to turbulence (flow is from right to left)
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error triggering the instability7 and often, 
computations of the Rayleigh Taylor in-
stability miss their appearance by using a 
dissipative numerical method. The need 
for highly accurate, resolved simulations 
for capturing the instability events has 
been noted by Cabot and Cook8 as, ‘the 
availability of even more powerful com-
puters has led to a somewhat ironic state 
of affairs, in that agreement between sim-
ulations and experiments is worse today 
than it was several decades ago.’ The re-
sults in Figure7 have been obtained by 
using optimised DRP methods to solve 
the compressible Navier-Stokes equation, 
which retain high accuracy while provid-
ing superior performance.

Transonic flow and shock 
capturing
While performing computations of the 
transonic flow past an aircraft wing sec-
tion, researchers face difficulties due to 
shocks in an unsteady flow. The use of 
highly accurate DRP methods is essential 
to draw comparisons with experiments.9 

The problem is with unsteady shock for-
mation that interacts with the boundary 
layer. Most analyses involve time-aver-
aging the flow to obtain the static shock 
instead, which is qualitatively different 
from the actual scenario of unsteady 
shock captured by accurately simulat-

ing the transonic flow field. A snapshot 
of such an unsteady flow is shown in  
Figure8, by solving the compressible Na-
vier-Stokes equation with DRP methods 
for a high Reynolds number. 

The discussion so far would convince 
the reader that in studying various geo-
physical, fluid dynamical, aeronautical, 
and astrophysical phenomena, there is a 
need for computational results with ev-
er-increasing accuracy. Any new insight 
can only be gleaned from carefully de-

signed, accurate time-accurate simula-
tions, backed up by rigorous analysis of 
numerical results. Advances in comput-
ing promise crossing over into exascale 
computing seamlessly. It is now all the 
more necessary that one does not com-
promise with accuracy while chasing per-
formance. Creating big data followed by 
uncertainty quantification would not be 
the goal, instead one must usher a new 
revolution in creating the unrelenting 
battle using scientific computing for ad-

Figure7: Time-resolved three-dimensional simulations capturing 
essential events occurring during the Rayleigh-Taylor instability, using 
highly accurate numerical methods 

Figure6: Three-dimensional response to a vortex convecting outside the boundary layer showing wave-packet 
formation after initial two-dimensional response
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vancement of science. In that respect, lots 
of progress has been made in this coun-
try.
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